

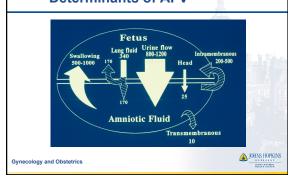

# RENAL DEVELOPMENT Nephron formation

- Pronephros (3rd-5th week)
  - nonfunctional
- Mesonephros (5th-12th week)
  - able to form urine
  - renin production
- Metanephros
  - final stage
  - mature metanephric kidney

Gynecology and Obstetrics



# RENAL DEVELOPMENT Metanephros


- Tubular function begins 9th-12th week
- Functional loop of Henle by 14th week

   tubular reabsorption
- New nephron formation through 36 wks

Gynecology and Obstetrics



# AMNIOTIC FLUID DYNAMICS Determinants of AFV



# AMNIOTIC FLUID DYNAMICS normal amniotic fluid volume

# NORMAL SONOGRAPHIC ANATOMY Fetal Kidneys

- Visualization transvaginal
  - earliest 9 weeks
  - 100% by 13 weeks
- Visualization transabdominal
  - earliest 13-14 weeks
  - most patients by 16-18 weeks

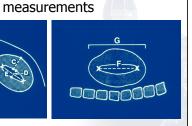


# NORMAL SONOGRAPHIC ANATOMY Fetal Kidneys

- Paraspinous
- · Circular/ elliptical shape
- Hypoechoic
- Echogenic rim more prominent with advancing GA

Gynecology and Obstetrics




# NORMAL SONOGRAPHIC ANATOMY Fetal Kidneys

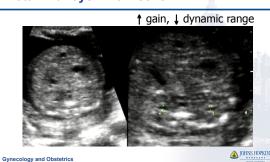
- Renal pelvis
  - slit-like, central, anechoic
- Medullae
  - hypoechoic
  - arranged in A-P orientation around pelvis
- Cortex
  - echogenicity similar to surrounding tissues

Gynecology and Obstetrics



# NORMAL SONOGRAPHIC ANATOMY Fetal Kidneys




JOHNS HOPKINS

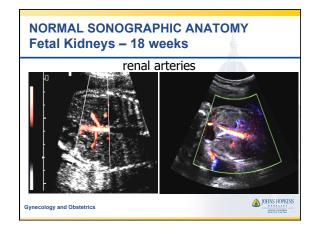
Gynecology and Obstetrics

# NORMAL SONOGRAPHIC ANATOMY Fetal Kidneys – 13 weeks



# NORMAL SONOGRAPHIC ANATOMY Fetal Kidneys – 18 weeks




# NORMAL SONOGRAPHIC ANATOMY Fetal Kidneys – 18 weeks





**Gynecology and Obstetrics** 

JOHNS HOPKINS





# NORMAL SONOGRAPHIC ANATOMY Fetal Bladder

- Visualization
  - earliest 10-12 wks (TA or TV)
  - almost 100% by 16 wks (TA)
- Appearance
  - rectangular, anechoic
  - thin wall

Gynecology and Obstetrics

# NORMAL SONOGRAPHIC ANATOMY Fetal Bladder

- · Level of iliac crest in transverse
- · Int iliac arteries along lateral walls
  - can aid in identification
- Variation in volume
  - filling emptying cycle 20-30 min

Gynecology and Obstetrics

JOHNS HOPKINS



#### NORMAL SONOGRAPHIC ANATOMY Fetal Bladder – 13 weeks



#### NORMAL SONOGRAPHIC ANATOMY Fetal Bladder – 18 weeks



## NORMAL SONOGRAPHIC ANATOMY Fetal Bladder – 30 weeks





Gynecology and Obstetric

## NORMAL SONOGRAPHIC ANATOMY Fetal Genitalia

- · Visualization GA, position dependent
- · Must distinguish labia from scrotum
  - testicles descend 28-34 weeks
  - testicles in scrotum 100% reliable
- ID of penis provides further evidence
- Pitfalls: prominent clitoris, small penis, undescended testicles

Gynecology and Obstetrics



#### **FIRST TRIMESTER GENITALIA**





Figure 1 Male gender was assigned sonographically if the angle of the genital tubercle to a horizontal line through the lumbosacral

skin surface was > 30°.

Gynecology and Obstetrics Ultrasound Obste

Ultrasound Obstet Gynecol 2006;27:619

JOHNS HOPKINS

A JOHNS HOPKINS

#### FIRST TRIMESTER GENITALIA

Table 1 Gender identification according to crown–rump length (CRL)

| Gestational<br>age (weeks) | CRL (mm)  | Patients<br>(n) | Gender<br>identified by<br>ultrasound<br>(n (%)) | gender |     |
|----------------------------|-----------|-----------------|--------------------------------------------------|--------|-----|
| 12 to 12 + 3               | 55.4-62.5 | 180             | 153 (85)                                         | 135    | 18  |
| 12 + 4 to $12 + 6$         | 62.6-67.9 | 218             | 209 (96)                                         | 194    | 15  |
| 13  to  13 + 6             | 68.0-83.9 | 258             | 251 (97)                                         | 226    | 2.5 |
| Total                      |           | 656             | 613 (92.6)                                       | 555    | 58  |

Gynecology and Obstetrics Ultrasound Obstet Gynecol 2006;27:619



#### FIRST TRIMESTER GENITALIA



Table 2 Accuracy of sonographic determination of fetal gender

|                            |           | Sonographical            | ly assigned male           | Sonographically assigned female |                          |
|----------------------------|-----------|--------------------------|----------------------------|---------------------------------|--------------------------|
| Gestational age<br>(weeks) | CRL (mm)  | Male at birth<br>(n (%)) | Female at birth<br>(n (%)) | Female at birth<br>(n (%))      | Male at birth<br>(n (%)) |
| 12 to 12 + 3               | 55.4-62.5 | 64/64 (100)              | 0/64                       | 65/71 (91,5)                    | 6/71 (8.5)               |
| 12 + 4 to 12 + 6           | 62,6-67,9 | 105/106 (99)             | 1/106 (1)*                 | 87/88 (99)                      | 1/88 (1)†                |
| 13 to 13 + 6               | 68.0-83.9 | 113/113 (100)            | 0/113                      | 113/113 (100)                   | 0/113                    |
|                            |           |                          |                            |                                 |                          |

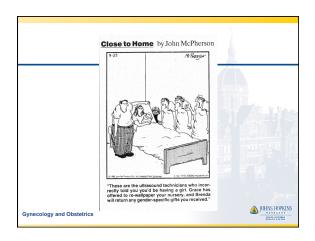
°CRL of the fetus was 63.5 mm. †CRL of the fetus was 62.6 mm

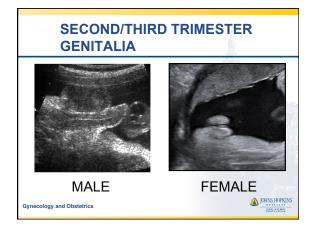
Gynecology and Obstetrics Ultrasound Obstet Gynecol 2006;27:619



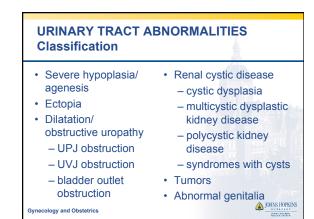
#### FIRST TRIMESTER GENITALIA

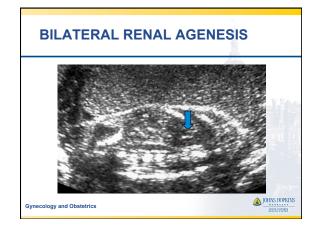


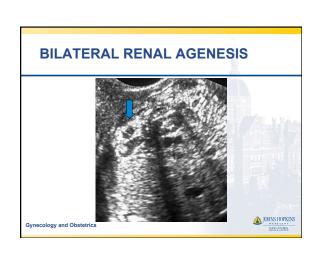


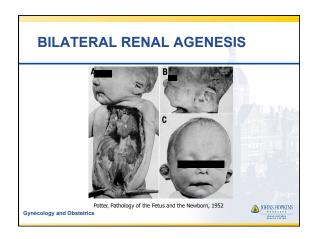


**FEMALE** 

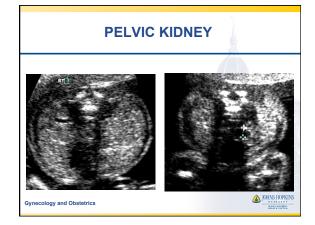
**MALE** 


Gynecology and Obstetrics


JOHNS HOPKINS

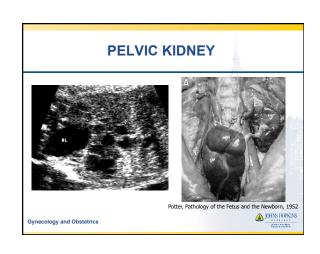


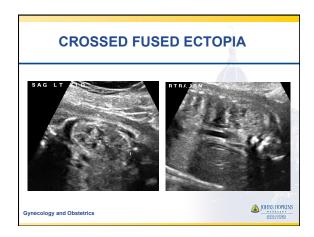



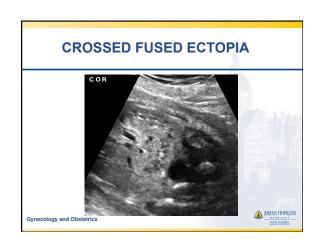





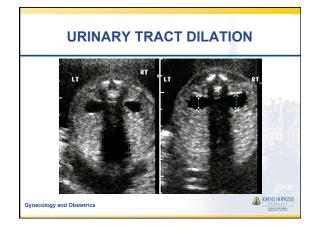













# HORSESHOE KIDNEY Gynecology and Obstetrics



### **Urinary Tract Dilation Consensus Meeting**

- March 14-15, 2014 in Linthicum, MD (AUA Headquarters)
- · Participants:
  - 1 director and 12 panelists
  - Audience consisting of clinicians and researchers from the various specialties
  - Webinar for those not able to attend
- - 1st day: current literature was reviewed and discussed
  - Evening: Panelists drafted a consensus statement
  - 2<sup>nd</sup> day: Statement presented to audience and discussed until the entire group arrived at consensus

Gynecology and Obstetrics

J Pediatr Urol 2014;10:982



#### **Participants**

#### Prenatal



aium

ACR

Gynecology and Obstetrics

- American Institute of Ultrasound in Medicine
- Bryann Bromley
  American College of
  Radiology
   Beverly Coleman
  Society of Radiologists
  in Ultrasounds

Carol Benson

American Society

#### Postnatal

- Society for Fetal Urology and Society for Pediatric Urology Anthony Herndon
- Jeffrey Campbell Christopher Cooper
- Society for Pediatric Radiology

   Jeannie Chow

   Kassa Darge
- American Society of Pediatric Nephrology - Michael Somers

Deborah Stein

J Pediatr Urol 2014;10:982

JOHNS HOPKINS

#### **Goals of the UTD Classification System**

- To propose a unified description of UT dilation that can be applied pre- and postnatally.
  - Simple but detailed enough to be meaningful for both
  - clinical use and future research endeavors.

     Allow for communication of information between specialists, providing consistent terminology.
- · To propose standardized schema for the perinatal evaluation of these patients based on sonographic criteria
  - Intended to be a starting point for observation and study
  - Will be modified over time based on the accumulated evidence. (A) JOHNS HOPKINS

Gynecology and Obstetrics

J Pediatr Urol 2014;10:982



Terminology

- Discourage the use of non-specific terms in describing UT dilation (e.g. hydronephrosis, pyelectasis, pelviectasis, uronephrosis, UT fullness or prominence, pelvic fullness)
- · Suggest the consistent use of the term " UT

Recommendation # 1:

Further determination of the severity of UT dilation is characterized by specific sonographic findings, delineated by the UTD Classification System

Gynecology and Obstetrics

J Pediatr Urol 2014;10:982



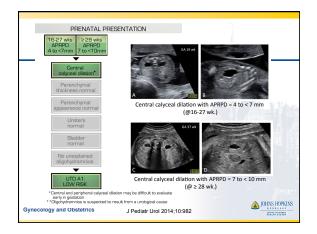
## Recommendation #3: Defining Normal

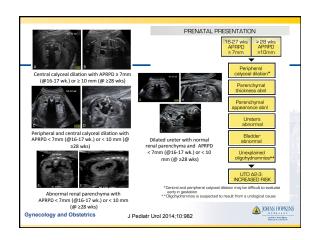
|                             | Time at Presentation |        |                      |  |
|-----------------------------|----------------------|--------|----------------------|--|
| Ultrasound Findings         | 16-27 <sup>6</sup> w | ≥ 28w  | Postnatal<br>(> 48h) |  |
| Anterior posterior diameter | < 4mm                | < 7mm  | < 10mm               |  |
| Calyceal dilation           |                      |        |                      |  |
| Central                     | No                   | No     | No                   |  |
| Peripheral                  | No                   | No     | No                   |  |
| Parenchymal thickness       | Normal               | Normal | Normal               |  |
| Parenchymal appearance      | Normal               | Normal | Normal               |  |
| Ureter (s)                  | Normal               | Normal | Normal               |  |
| Bladder                     | Normal               | Normal | Normal               |  |
| Oligohydramnios             | No                   | No     | NA                   |  |

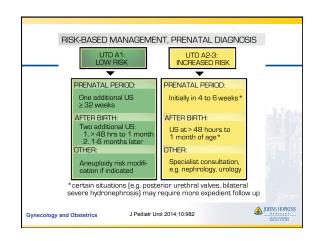
Gynecology and Obstetrics

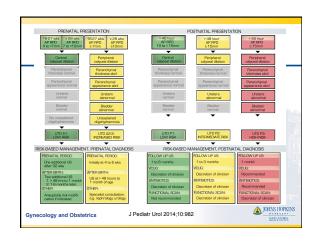
J Pediatr Urol 2014;10:982




### Recommendation #3: Stratification of Risk


- Risk of what ???
  - Defined as the presence of postnatal urological pathology
- Further research will be needed to correlate risk stratification to clinical outcomes ( UTI, pain, stone, need surgery, renal function, urological pathologies)
- Propose follow up recommendation based on risk stratification


Gynecology and Obstetrics


J Pediatr Urol 2014:10:982











#### **CAUSES OF URINE FLOW IMPAIRMENT**

- UPJ anomaly
- UVJ anomaly
- Post urethral valves
- Duplex systems
- Ureterocele/ ectopic ureter

Gynecology and Obstetrics

- Urethral atresia
- · Cloacal anomaly
- Vesicoureteral reflux
- Megaureter
- Megacystis microcolon hypoperistalsis synd

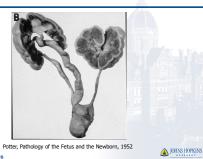


#### **CAUSES OF URINE FLOW IMPAIRMENT**

- Sacrococcygeal teratoma
- Hydrometacolpos
- Other pelvic masses

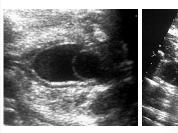
Gynecology and Obstetrics




#### **DUPLEX SYSTEM**






Gynecology and Obstetrics

#### **DUPLEX SYSTEM**



Gynecology and Obstetrics

#### **URETEROCELE**





#### **OBSTRUCTIVE UROPATHY Prognostic Factors**

- Site of obstruction
- Degree of dilatation
- · Cortical appearance
- · Amniotic fluid volume
- · Associated anomalies
- Urine biochemistry

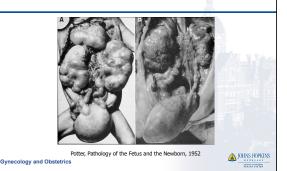


# **OBSTRUCTIVE UROPATHY** Evaluation & Management

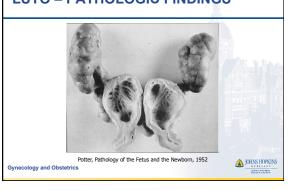
- · Look for associated anomalies
- Offer karyotype
- · Patient counseling
- Pediatric subspecialty consultation
- If urethral level obstruction (LUTO):
  - consider urine biochemistry
  - consider vesicoamniotic shunt

Gynecology and Obstetrics

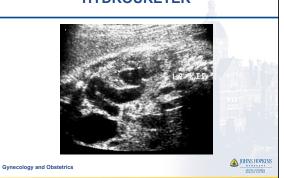



#### **LUTO - SONOGRAPHIC FINDINGS**

- Urinary tract dilation
  - renal pelves ≥ 10 mm
- Hydroureter
- · Dilated bladder
  - thick wall
  - "keyhole sign"
- ± signs of renal dysplasia

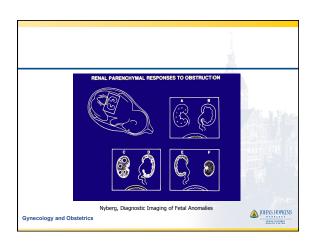

Gynecology and Obstetrics

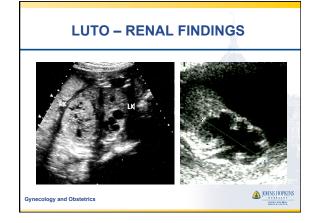



#### **LUTO - PATHOLOGIC FINDINGS**




#### **LUTO - PATHOLOGIC FINDINGS**





#### **HYDROURETER**



#### **LUTO - "KEYHOLE" BLADDER**













Gynecology and Obstetrics

#### **LUTO – EVALUATION**

- Karyotype
  - amniotic fluid, fetal urine, fetal blood, chorionic villi
- · Detailed sonography
- · Serial urine testing
  - sodium, chloride, calcium, osmolality, total protein, β-2 microglobulin
  - at least 3 samplings 48-72 hrs apart

Gynecology and Obstetrics



#### **LUTO - BLADDER ASPIRATION**



#### **LUTO URINE VALUE THRESHOLDS**

Sodium

< 100 mmol/L

• Chloride

< 90 mmol/L

Osmolality

< 200 mOsm/L

< 8 mg/dL

Calcium

• ß-2 microglobulin < 6 mg/dL

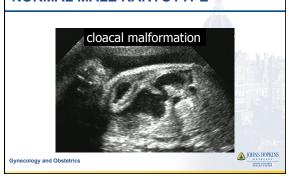
· Total protein

< 20 mg/dL



#### **OBSTRUCTIVE UROPATHY** Criteria for in utero Rx

- Lower urinary tract obstruction (LUTO)
- Normal male karyotype
- · No other significant anomaly
- · Improving fetal urine values


Gynecology and Obstetrics



# **LUTO - CRITERIA FOR IN UTERO RX NORMAL MALE KARYOTYPE**



#### **LUTO – CRITERIA FOR IN UTERO RX NORMAL MALE KARYOTYPE**



#### **VESICOAMNIOTIC SHUNTING** IN FETAL LUTO: TECHNIQUE

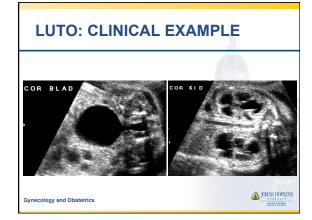


### **VESICOAMNIOTIC SHUNTING**



#### **VESICOAMNIOTIC SHUNTING** IN FETAL LUTO: TECHNIQUE

JOHNS HOPKINS




### VESICOAMNIOTIC SHUNTING IN FETAL LUTO: PROBLEM AREAS

- Natural history is highly variable
- Limited accuracy of antenatal assessment of prognostic factors:
  - etiology
  - renal function
- · Procedure related complications
- Poor quality of available evidence of efficacy

Gynecology and Obstetrics





#### **LUTO: CLINICAL EXAMPLE**



#### **LUTO: IS A STENT JUSTIFIED?**

- · YES, with the following caveats:
  - antenatal assessment must be systematic and complete
  - patients must be thoroughly counseled and informed of both short term and long term outcomes
  - ideally should be included in a clinical trial or registry

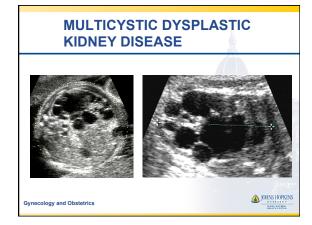
Gynecology and Obstetrics

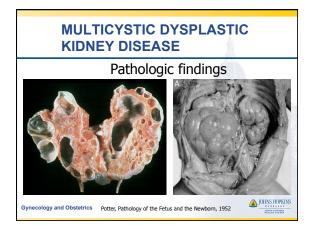


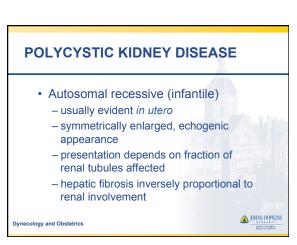
# MULTICYSTIC DYSPLASTIC KIDNEY DISEASE

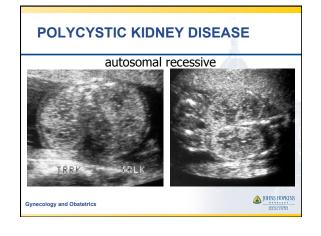
- Complete proximal obstruction or atresia before 10 weeks
- · Sonographic appearance
  - enlarged kidney, irregular contour
  - multiple cysts, various sizes
  - no communication between cysts

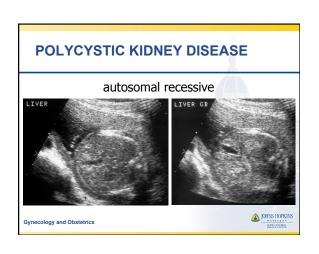
Gynecology and Obstetrics

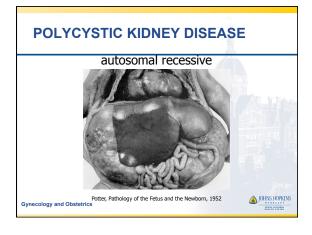




# MULTICYSTIC DYSPLASTIC KIDNEY DISEASE


- · Dysplastic kidney nonfunctional
- · May diminish in size or disappear
- 40% contralateral abnormality
  - UPJ most common
- Prognosis
  - good if unilat, other kidney nml
  - fatal if bilateral





# MULTICYSTIC DYSPLASTIC KIDNEY DISEASE LT Gynecology and Obstetrics














#### POLYCYSTIC KIDNEY DISEASE

- · Autosomal dominant (adult onset)
  - commonly presents in young adults
  - occasionally seen in utero
  - enlarged, echogenic kidneys, ± cysts
  - family history crucial

cology and Obstetrics



#### **AMBIGUOUS GENITALIA**

- Genitalia not typical for male or female
  - Cannot differentiate penis from clitoris
  - Cannot differentiate scrotum from labia
    - · Empty scrotum resembles labia
    - Fused labia resemble scrotum
- · Secondary structures rarely seen in fetus
  - Uterus, ovaries, undescended testes

Gynecology and Obstetrics



#### **AMBIGUOUS GENITALIA MORPHOLOGY**

- Male
  - Hypospadias / epispadias
  - Microphallus
  - Chordee (ventral curvature of penis)
  - Cryptorchidism (undescended testes)
- Female
  - Clitoromegaly
  - Prominent or fused labia

cology and Obstetrics



#### **AMBIGUOUS GENITALIA ETIOLOGY**

- Congenital adrenal hyperplasia (CAH)
  - Treatable
- Female pseudohermaphrodism
  - 46,XX, fetal or maternal androgen source
- · Androgen insensitivity syndrome
  - 46,XY, ↓ end organ testosterone effect
  - Complete female external genitalia
- Incomplete ambiguous genitalia

Gynecology and Obstetrics



#### **AMBIGUOUS GENITALIA ETIOLOGY**

- · Mixed gonadal dysgenesis -45,X/46,XY
- Pure gonadal dysgenesis
  - Variable karyotype
- True hermaphrodism
- Aneuploidy
- · Duplication and deletion syndromes



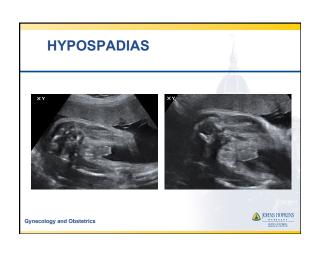
# AMBIGUOUS GENITALIA EVALUATION

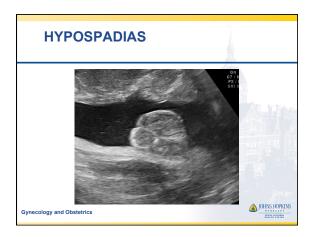
- Determine genetic sex
  - cfDNA, amniocentesis
- Evaluate for aneuploidy, duplication and deletion syndromes
  - Karyotype, microarray
- · Evaluate for CAH if virilized female
  - Molecular genetics, amniotic fluid 17 OHP
  - Maternal dexamethasone if affected female

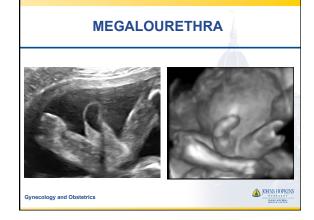
Gynecology and Obstetrics

Gynecology and Obstetrics

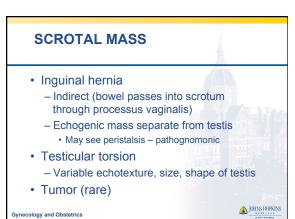


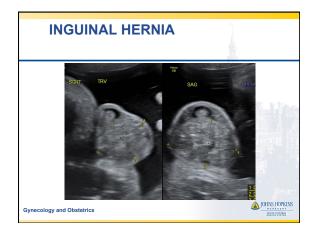

▲ JOHNS HOPKINS


# AMBIGUOUS GENITALIA Gynecology and Obstetrics

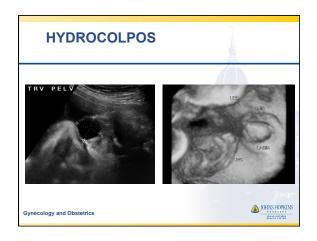






# Urethral orifice on ventral side of penis 50% anterior near glans 30% middle 20% posterior Blunt ended or bulbous penis "Tulip" sign – small penis between scrotal folds Other urogenital anomalies in 40%





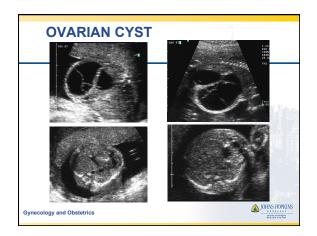







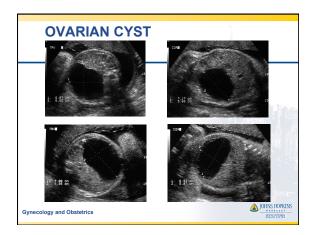



# Vaginal obstruction Distension of vagina with secretions Unilocular retrovesicular cystic mass funneling to perineum Look for evidence of cloacal anomaly Cynecology and Obstetrics





#### **OVARIAN CYST**

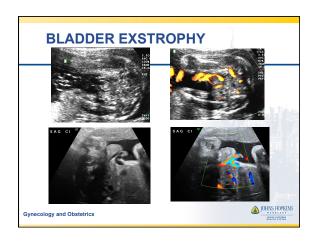

- Fetal ovarian response to maternal hormones
- Abdominal cyst in female fetus
  - Usually in lower abdomen / pelvis
  - Variable in size
  - May be simple, complex, septate
- · GI and urinary tracts normal
- · May resolve spontaneously
- · Hemorrhage, torsion may occur

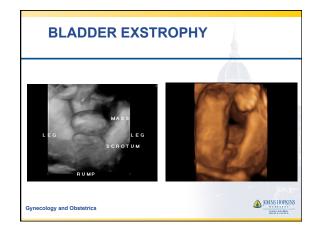
Gynecology and Obstetrics

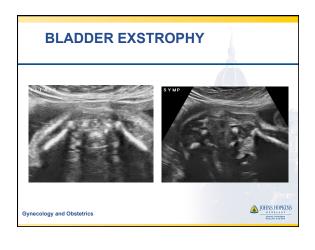


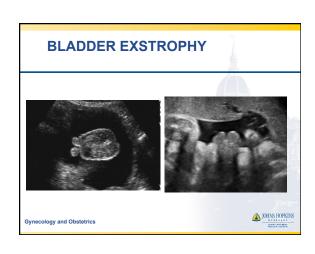


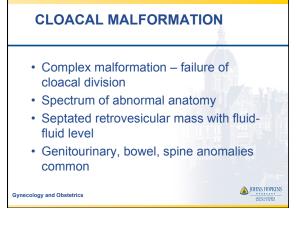


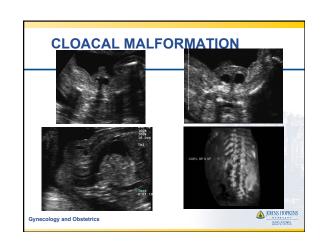




#### **BLADDER EXSTROPHY**


- · Lower abdominal wall defect
- Exposed bladder
  - Soft tissue mass posterior bladder wall
- Abdominal cord insertion at superior margin of exposed bladder
- Wide iliac wing angle, separated pubic symphysis
- Abnormal genitalia


- Bifid penis, separated labia














# PROTOCOL FOR GENITOURINARY ANOMALIES

- Genitourinary system evaluation
  - measure renal pelves, renal lengths
  - assess renal appearance (contour, echogenicity, cysts)
  - demonstrate renal artery blood flow (color or power Doppler), consider pulsed Doppler study
  - image bladder in transverse and coronal/ sagittal planes, measure bladder volume and/ or wall thickness if appropriate

Gynecology and Obstetrics



# PROTOCOL FOR GENITOURINARY ANOMALIES

- Genitourinary system evaluation (cont'd)
  - look for ureteral dilatation
  - if kidneys or bladder are enlarged, measure fetal abdominal circumference at maximum level in addition to standard level
- · Evaluate amniotic fluid volume
- · Complete anatomic survey
- · Fetal echocardiography
- Consultation as appropriate (genetic counseling, pediatric urology, neonatology)



